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Abstract. Let S be a locally compact space and let X be a Banach
space. Let us consider the function space Cg(S, X) of all continuous func-
tions f:§ — X vanishing at infinity, endowed with the uniform topology. We
shall be concerned with integral representations of linear bounded operators
T : Co(S, X) — X. The main result is a complete characterization of those
operators which enjoy an integral form with respect to a scalar measure u on S.
Furthermore we show that such operators also have an integral representation
with respect to an operator valued measure G on S with values in £ (X, X),
the space of bounded operators on X. Finally, relationships hetween the dif-
ferent measures are established and this allows to characterize the operators
under consideration by their representing measures.
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1 Introduction

1.1. Let S be a locally compact space equipped with its Borel field Bg and
let X be a Banach space. A function f: S — X is said to vanish at infinity, if
for every £ > 0 there exists a compact set K = K, ; < S such that || f (2} <
g, Vo & K. We shall dencte by (4(S, X) the vector space of all continuous
functions f : § — X vanishing at infinity. If X = R, we note Cy(S, X} =
Co(5).

For f € Cyh(S, X'}, we put:

(1.2) 171 = Sup |l /()]
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Then it is well known that:

1.3. Proposition: Formula (1.2} defines a norm on Cy(S, X), for which
Co(S, X) is a Banach space.

For a Banach space E, £* will be the topological dual of £ and E* the
topological dual of £*. Tt is assumed that all measures considered here are
defined on Bg. If it is a set function on Bs with values in the Banach space £
we refer the reader to Chap.IV of [4] and Chap. I of [1] for the definition of
the variation v(x) and the semivariation |[uff of p.

1.4 We shall deal occasionally with additive set functions & : Bg — L{X, I),
where £{X, F'} is the space of linear bounded operators of the Banach space
A into the Banach space £,

If G is such a function, we define the semivariation of 0 by the set function:

Z_ G{A).z;

the supremum being over all finite partitions {A4;} of B in Bg and all finite
systems of vectors {z;} in X, with [z <1 Vi.

The function G is said to be of finite semivariation if G(B) is finite for ali
B e Bs.

The aim of this work is to characterize bounded linear operators T': Cy{ S, X)) —
X via integral representation either by a scalar measure or by a vector mea-
sure. In section 2 we start with the identification of those T': Cp{S, X) — X
that do have an integral form with respect to a scalar measure.This will extend
the results of [7] to the setting of a locally compact space S. In section 3 we
will consider integral representation by operator valued measures for a simple
integration process. Finally relationships between the various representations
are considered.

B e Bg, G(B) = Sup

2- The class R

In this section and in section 3 we assume that X is a fixed Banach space
and S a locally compact space.
Let p be a bounded signed measure on .S an let us consider the Bochner integral

(21) feC(S,X), Tuf=[,fdu

For all properties of the Bochner integral we refer the reader to [5].

2.2 Proposition: {(a) Formula (2.1} defines a linear bounded operator from

Col S, X)) into X.

(b) For every bounded operator U : X — E from X inio the Banach space E
we have UT,f = T,Uf for all [ € Co(8, X)), where UJ is the vector of

Co(S,E) given by Uf (1) =U{f(#)),t € S.

() 1T, =v (u) ( the variation of p ).
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Now we want to identify those operators T': Cp(5, X) — X, for which there

Is a signed measure u on S such that T = T,. To this end we shall extend

the strategy used in [7] to the present setting. So we begin by introducing the

family of bounded operators Uy 1 Gy (S, X} — Cp (S), * € X given hy:
(2.3) Fely(5X), Usf=a*cf,

where % o f (1) = z*(f (1)), t € 5. We collect some facts about U, for later

use:

2.4. Proposition: Ug. s onfo for each z* # 0.

Proof: If x* # 0, take x € X such that z"(z} = 1. For A € Cy(S) put
f(s)=h{s)x,s €S Then e Co(S,X) and we have U, f (s) = &* (f (s)) =
h{sy.a” (z) = h{s).M

2.5. Definition: Let R be the class of linear bounded operators T : Cp(S, X) —
A satisfying the following condition:

() T E XY, [, € ColS,X) : Upn f = Upg = 2T =Ty

It is easy to check that R is a closed subspace of the space of all bounded
operators T : (S, X) — X. Note also that every T, in (2.1) is in R, by
2.2(0).

The outstanding fact about R is:

2.6. Theorem: Let T be an operator in R, then there exists o unique bounded
linear functional ¢ Cy (S} — R such that:

(2.7} polUp =x"0T

for every z* & X~

Proof: Let h € Cy(S) and ¥ € X", 2% # 0; by 2.4 there is an f € Cy(S, X)
such that U, f = h. then we put:

(2.8) o (h) = z*Tf

HUpe f == Uprg = h, then 2*T f = y*Tg, by condition ((') ; so ¢ is well defined,
and it is easy to see that ¢ is linear. We must show that ¢ is bounded. We
may argue as follows: since U,. is bounded and onto, by the open mapping
principle there exists a constant K = K- > 0 such that for every h € Cy(9),
there is a solution f € Cp(S, X) of Ups [ = h, with || f]} < K. |JAl]. From (2.8)
we deduce that e (h)[| < [l 1T 1F] < [l=*|| 7] K }|&)|, which proves that
i is bounded.

It is noteworthy that the functional ¢ does not depend on the choice of 2* hut
depends only on T’ For if ¢+ and ¢, are defined as in (2.8), with o*,v* #
0, then @, (h) = &*Tf if h = Up f and @y () = y*Tg if b = U,-g; but
condition (C) on 7' implies that ¢« (b} = i, (h}. It remains to prove (2.7).
For f & Co(S,X) and 2* € X*, we have h = U,. [ € (5(5), and (2.8) gives
@ (h) =@ (Up f) = x"Tf. Since f and z* are arbitrary, (2.7) follows.H
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By a straightforward extension of theorem 2.1 in [7], to the present setting, we
get:

2.9. Theoremy: There s an isomelric isomorphism between the Banach space
R and the topological dual CH(S) of Co(S), for each non trivial Banach space
X.

Now we turn to the representation of operators T in the class R,via Bochner
integrals.

2.10. 'Theorem: Fvery operator T in R is of the form T,, for o unigue
bounded signed measure w on S. In other words, to each T in the class R
there corresponds a unique bounded signed measure p on S such that:

(2.11) Y F € Col8,X), T(f) = [, fdp
171 = ()

Proof: Let ¢ the functional corresponding to the operator T according to 2.6,
and let, 4 the measure related to ¢ by the Riesz representaion theorem ([10]
theorem 6.19 ). Then for every h € Cy(S), we have ¢ (h) = [, h dpy; so, if
h= U fwith f € Co(S, X)), weget, by 2.2 (b) o (Up f) = 2*T,f. But hy 2.7
o (Upe f) = 2T f, therefore *Tf = 2*T, f; and since f and z* are arbitrary,
we deduce that T =T, M

3-Representations by operator valued measures

In this section we show that a linear bounded operator T« Cp(5, X) — X
in the class R enjoy an integral representation by an operator valued measure
whose special form will be used to characterize the operator T' as being a
member of the class R. In what follows we first make precise the integration
process which will be used in our representation.

3.1 A simple measurable function s on 5 with values in the Banach space X
is a function of the form s (e) = 3" 14, () .2;, where {A;} is a finite partition

of S in Bg, and {z;} is a finite system of vectors in the Banach space X.
The symbol 14, means the characteristic function of the set A;. Let & be
the set of all X—valued simple functions on S. A function f : § — X is
said to be measurable i there is a sequence s, in & converging uniformly to
fon S. Let M (5, X) be the set of all measurable functions. Then & and
M (S, X} are in an obvious way vector subspaces of the space Fof all bounded
functions f : S — X. Actually the uniform convergence alluded fo above is
the convergence with respect to the supremwum norm || f|| = Sup|lf{(s)]], for
s€8

[ € F. It is the same to say that M (S, X) is the closure of & for this norm.

Now let (¢ : Bg — L({X, ) be an additive set function on Bs with values
in L{X, &), the gpace of linear bounded operators from the Banach space X
into the Banach space [, Assume that & has finite semivariation (see 1.4).
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We define the integral of the simple function s{e) = Y"1, (e} .x; over the set
i

B € By, with respect to G by:

(3.2) J58dG =3 G (AN B) .z

1t is easy to check that the integral is well defined and satisfies:
(3.3) |/ 5G| < |15} .G(B)

Let us observe that estimation (3.3) implies that the linear operator Ug :
G —F, with Ug (5) = [, 5 dG is bounded. So we can extend it in a unique
manner to a bounded operator on the closure M (59, X) of &. This extension
will be our integration process on the space M (S, X) of measurable func-
tions.We shall denote it also by Uz with Ug = U if B = S. Note that if
J € M{S, X} and if s, is a sequence in & such that ||f — s,l| — 0 then the
integral of f is given by:

(3.4) Up (f) = [ ] dG =lim, [, s, dG

By {3.3) the integral (3.4) does not depend on the sequence s, chosen to
converge to the function f. This simple integration process will be sufficient
for our purpose. The outstanding facts are summarized in the following:

3.5 Theorem: Let G be an additive L(X, E)-valued set function with finite
semivarialion on Bg. Then:
(a) The integral [, f dG is lincar in f € M (S, X) and sotisfies:

(3.6) G(BY = Sup {{| [, 4G, [fIl <1, feM(SX)}

in other words the operator Up : M (5, X) — E given by Ug (f) = fp [ dG
is bounded with norm ||Ugl = G(B), for each B € Bg. Conversely:
(b) Let U : M(S,X) — E be a bounded operator. Then there is o unique
additive sel function G : Bg — L{X, E),
with finite semivariation such that:

(3.7) VIeM(S,X), VBeBs, U([lp)=[,fdC

(c) Let A+ B —Y be o bounded operator from E into the Banach space Y. Let
us define AG By — L{X,Y) by (AG) (B)z = A(G(B)z), B Bg, z € X.
Then AG is an additive L{X,Y )-valued set function with finite semivariation
and we have:

(3.8) Y feM(5X), [,fdAG=A([,fdC)
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Proof: {a) To prove (3.6) start with f simple and use (3.2) and the definition
of G{B). For general f use {3.4).

(b) Define G : Bs — L{X, E) by G(B) x =U(lg.x), for B& Bg,and z € X.
Then G is additive since U is linear and G is L{X, F}-valued because U is
bounded. Now (3.7} is easily checked by (3.2) and (3.4).

{¢} To prove (3.8) start with f simple and use the definition of AG, then apply
{3.4), ( recall that the operator A is bounded ).l

Actually, part () of this theorem is an integral representation of a bounded
operator U on the space M {5, X') by means of an £(X, E}-valued set function
(& on Bg. In our context we need representation for operators on the space of
continuous functions Cy{S, X). This is a less trivial problem which will be
solved presently for operators in the class . First let us cobserve:

3.9 Proposition: We have

ColS, X)) c M (5, X7,
that is Co(S, X} is a subspace of M {5, X} .
Proof: Let us consider the set of all functions f € Cy(S, X) of the form
J(8) = g{e) .z, with g € Cy{S) and =z fixed in X. We denote by Cy(S) @ X
the subspace spanned by this set of functions. Then it is known that Ch(S)& X
is dense in Co(S, X)) ( see Propositionl §19 in 2] }.
So it is enough to show that Cy{5) @ X C M (5, X). Let f € Co(8) ® X of
the form [ = g.o with ¢ € (5(S5). Since g is scalar measurable, bounded on
S, there exists a sequence ¢, of simple sealar functions on S converging to g
uniformly on S. But then the functions s, = &,.x are simple X —valued and
converge uniformly to fon 8. Thus f € M({5 X). B

Now we are in a positiocn to give the main theorem of this section:

3.10 Theorem: To each operator T : Cy(S5,X) — X in the class R there
corresponds o unique operator valued set function G on Bs with values in
L{X,X) such that

(3.11) Ve oS, X),  Tf=[.fdG
Moreover the function (7 is o—additive in the uniform operator topology and
takes its values in a compact set of L{X,X).
Proof: Let u be the bounded signed measure attached to the operator T' by
theorem 2.10. Define the set function G : Bg — L{X, X) by:

(3.12) B e By, G{(B)=p(B).1I

where [ is the identity operator of X. From (3.12) we deduce that the semi-
variation of (G is egual to the variation of p and so it is finite. It is a simple
routine job to check that the integration process (3.2} — (3.4) with this & is
exactly the Bochner integration process with the measure g This means that
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for every f € M(S, X) we have [, f dG' = [, f du. Note that the Bochner in-
tegral in the RHS is well defined since the functions f and p are both bounded.
From (2.11) we deduce the validity of (3.11). On the otherhand formula (3.12)
shows that (7 is o—additive in the uniform operator topelogy of £{X, X} and
takes values in the one dimensional subspace of £(X, X) spanned by I . But
the range of G is bounded by the variation v (p) of p, so it is conditionally
compact. M
Let ug point out the converse:
3.13 Theorem: Let T : Cy (S, X) — X be a bounded operator such that
(3.11) holds with G given by (3.12), where 1 is ¢ bounded scalar measure.
Then T € R, that is T =T,.
Proof: For f & Cy(5,X), we have Tf = [, f dG and, by (3.8) with A =
v, we have o°1'f = [o f du*G, for each z* € X*. From {3.12) we deduce
that 2°G (e) = p(e).2", and then o*Tf = [, f dpz* = [ 2" o [ du, by
standard tools of integration. The last integral is equal to 2°7, f by proposition
(2.2),(b). Thus 2*T'f = &*T,f; since f and 2* are arbitrary, we deduce that
T=1T,M
For the sake of completeness, we give the following integral representation valid
for operators T' € R in the case S compact. For the proof the reader is refered
to theorem 5.3 in[7):
3.14 Theorem:Suppose S compact. Then a linear bounded operator T
Co{S, X) — X is in the class R if and only if T admits an integral repre-
sentation by the set function & Bg — L{(X, X**), such that:

(3.15) Be By, G{(B)=pn(B).~y
where s a bounded scalar measure and v : X — X** the canonical isomor-
phism.

Proof: The necessity comes from theorem 5.3 of [7}. The proof of the suffi-
ciency is a straight{orward adaptation of the proof of theorem 3.13.1

3.16 Theorem: If S is compact, then for each T € R, the representing
measure (7 in (3.13) s o—additive in the uniform topology of L{X,X™) and
takes its values in a compact set of L{X, X*).

Proof: We have: G (e) = ji (e} .7, where u is a bounded scalar measure and
v is the canonical isomorphism of X into X ™.

It is clear, that G is o—additive in the uniform topology of £{X, X**). On
the other hand, the values G(A) = pu{A).y, A € By, of the measure G,
form a subset B of the space K, spanned by v in £ (X, X**). Since K . 18 one
dimensional and since B is bounded by v (4}, we deduce that B is conditionally
compact in K, and also in £ (X, X*) W

Another question one can ask about operators in the class R concerns weak
compactness properties. Unfortunetely, we have been unable to prove that
such operators are weakly compact, even though we strongly feel they are so.
Hoewever we have the following partial result.
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3.17 Theorem: Let T be an operator in the class R. Then for each z € X,
the operator T, : Co(S) — X defined by: Ty, (g) = T (9.2}, g € Cu(S), is weakly
compact.

Proof: Since 7' € R we have by (2.11) T'(g.z) = [,g.x du. So we de-
duce T, () = [og. dp{e).z, where p (e).x is a vector measure (in the sense
of IV-10 in [4]). It is enough to show weakcompactness for the adjoint oper-
ator T « X* — Cj(S}. From theorem IV-10-8 {f) in [5]), we have z*T,g =
Js gda* (p (o) ) for all 2* € X*. So we can write T (2*) = z* (1 (¢) ). Since
the set of numerical measures {z* (p{e).x) : x* € X*, ||z*] < 1} is weakly
compact (by IV-10-2 [4]} we deduce that T7 is weakly compact. M

For integral representations in a more general setting see [3], [8], [9].
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