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NONCOMMUTING MAPS
AND INVARIANT APPROXIMATIONS

Abstract. We obtain common fixed point results for generalized -T-nonexpansive

cbmpat:ble as well as weakly compatible maps. As applications, varicus best approxima-
tion results for this class of maps are derived in the setup of certain metrizable topological

_ vector spaces.

1. Introduction and prehmmarles

Let X be a linear space. A p-norm on X is a real-valued functlon I 1is
on X with 0 < p < 1, satisfying the following conditions:

(i) lellp 2 0 end [[zfl, =0 & 2 =0,

(i) flazllp = |alP|lzllp,
(i) + yilp < fzllp + Hvllps

for all z, y € X and all scalars a. The pair (X%, 11, Ilp) is called & p-normed .

space. It is a metric linear space with a translation invariant metric dp
defined by dp(z,y) = |z — yllp for all z,y € X. If p = 1, we obtain the
concept of the usual normed space. It is well-known that the topology of

~ every Hausdorff locally bounded topological linear space is given by some .
p-norm, 0 < p'< 1(see [15}). The spaces Iy and Lp, 0'< p < 1 are p-normed -

spaces. A p-normed space is not to necessarily a locally convex space. Recall

that dual space X* separates points of X {or equivalently X * is total [18]) ..

if for each nonzero = € X, there exists f € X* such that f(z) # 0. In this
case the weak topology on X is well-defined and is Hausdorfl. Notice that
if X is not locally convex space, then X need not separate the points of

X. For example, if X == L,[0,1], 0 < p < 1, the space of to the power p
integrable functions, or X = 510, 1], the space of measurable functions, then a
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X* = {0}(see [15, 18, 20]). However, there are some non-locally convex
spaces X (such as the p-normed spaces Ip, 0 < p < 1) whose dual X~
separates the points of X.. ‘ .

Let X be a metric linear space and M a nonempty subset of X. The
approximants to u € X from M, where dist{u, M) =inf {d(y,u) : y € M}.
We shall use N to denote the set of positive integers, ¢l(S) to denote the
closure of & set S. The diamster of M is denoted and defined by §(M) =

set Pry(u) = {z € M : d(z,u) = dist(y, M)} is called the set of best

sup {llz - ¥] : ,4 € M}. A mapping I : X — X has diminishing orbital
diameters (d.o.d.) [13].if for each z € X, 6(O{z)) < oo and whenever |

§(0(z)) > 0, there exists n = n; € N such that §{0(z)) > s(O(I"(z))),
where O(z) = {I*(z) : k € N U {0}} is the orbit of ] at z and O(I"(z)) =
{I*(z) : k € N U {0} and k> n} is the orbit of I at I"(z) forne N U {0}.
Let I be a self-map of a topological space X. The orbit O{z) of I at z
is proper if and only if O(z) = {x} or there exists n = ny ‘€ N such
that cl(O(I"(x))) is a proper subset of cI(O(z)). If O(x) is proper for each
2 € M C X, we shall say that I has proper orbits on M. Observe that in

metric space {X,d) if I has d.o.d. on X, then I has proper orbits {10, 11].-.

Let I : M — M be a mapping. A mapping T : M — M is called an
I-contraction if, there exists 0 < k < 1 such that d(T'z, Ty) < kd(Iz,Iy)

for any z,y € M. If k' =1, then T is called I-nonexpansive. A mapping -
T+ M — M is called (1) completely continuous if {z,} converges weakly

to x implies that {Tz} converges strongly to T'z; (2) demiclosed at 0.if for
every sequence {Zn} € M such that {z,} converges weakly to z and {Tz.}
converges strongly to 0, we have Tx = 0. The mappings I and T are said
to satisfy the condition (A®) if for any sequence {z,} in M, D € C(M)

‘such that dist(xn, D) — 0 and d(Tan, Tzp) — 0 8s n — 00, there exists «

y € D with Iy = Ty, where C(M) denotes the class of nonempty closed
subsets of M. The set of fixed points of T' ( resp. I) is denoted by F(T)
(resp. F(I)). A point z € M is a common fixed (coincidence) point of

Tand T if z = Iz = Tz(Jz = Tz). The set of coincidence points of T -

and T is denoted by C(I,T). The pair' {1,T} is’called (3) commuting if
TIz = ITz for all z € M; (4) R-weakly commuting if for all z € M there
exists R > 0 such that d(ITz, TIz) <Rd(Iz,Tx). If R = 1, then the maps
are called weakly commuting; (5) compatible [9] if limp d(T I, I Tz,) =0
whenever {z} is a sequence such that limg Tty = limy, Jzn = t for some ¢

in M; (6) weakly compaiible if they commute at their coincidence points, . o
i.e.if ITz = TIz whenever Iz = Tz. If I and T are weakly compatible and

do have a coincidence point, I and T are called {3, 10]. nontrivially weakly
compatible. The subset M of a linear space is called g-starshaped with
g € M if the segment [g,a] = {(1 = K)g+kz:0< k< 1}
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Noncommuting maps and invariant approzimotions 897

r, is contained in M for all z € M. Suppose that M is ¢-starshaped with
g € F(I) and is both T~ and I-invariant. Then T and I are called;
(7) R-subcommuting on M if for all £ € M, there exists a real number

R > 0 such that d{JTz, TIz) < £d((1—k)q+ kT, Iz) for each k € (6,1]. If -

R = 1, then the maps are called 1-subcommuting [7}; {8) R-subweakly com-
muting on M {see {8, 23]) if for all z € M, there exists a real number B> 0

such that d(ITz, TIz) < Rdist(Iz, [g, Tz]). Clearly, R-weakly commuting,

and compatible maps are weakly compatible but not conversely in general.
R-subcommuting and R-subweakly commuting maps are compatible but the
converse does not hold in general {11].

In 1995, Jungck snd Sessa [12] extended the results of Meinardus [17], .

Singh [25], Habiniak [4] and Sahab, Khan and Sessa [21] to the pair of
commuting maps defined on weakly compact subset of a Banach space.
Latif {16], further extended these results to the setting of p-normed spaces.
More recently, Shahzad [23, 24]], Hussain and Jungek [11}, Hussain et al. [8],
Jungck and Hussain {11] and O’Regan and Hussain [19] further extended the
above-mentioned zesults to R:subweakly commuting and weakly compatible
maps.. The aim of this paper is to establish a general common fixed point
theorem fot compatible and weakly compatible generalized J-nonexpansive
maps in the setting of locally bounded topological vector spaces and locally
convex topological vector spaces. As application, we derive some results

on the existence of best approximations. Our results unify and extend the

results of Dotson [1, 2], Habiniak [4], Hussain and Berinde {5], Hussain and
Khan [7}, Hussain, O'Regan and Agarwal [8], Jungck and Sessa {12}, Khan

et al. [13], Khan and Khan [14], Latif [16], O'Reganand Hussain [19], Sahab

‘et al. {21}, Sahney et al. {22}, Shahzad [23, 24], and Singh [25, 26].
. Here, we state some useful results.. ' :

TﬁEORﬁ:M 1.1 [3]. Let X be a Hausdorfl topological space, and I, T be

continuous and nontrivially weakly compatible self-maps of X. Then there

exists a point z in X such that I z =Tz =z, provided T satisfies following -

condition -
(C) ANF(T)# 0 for any nonempty T-invariant closed set A C X.

The next theorem gives co‘nditionsr under which condition (C) is satisfied.

TueorEM 1.2 ({10], Theorem 3.1). Let X be ‘o« Hausdorff topological space
and T be o continuous self-map of X. If T has relatively compact proper
orbits then T satisfies condition(C). : '

2. Common fixed point and approximation results ‘
" The following recent result will be needed in the sequel.  »

e i,
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- THEOREM 2.1 [11]. Let M be a subset of a metric space (X, d), and I and

T be self-maps of M. Assume that cdIT(M) C I(M), ddT{M) is complete
and I, T satisfy for all z,y € M’ and 0 < h < 1 the condition

21)  d(Tz,Ty)
< hmax {d(Iz, Iy), d(Iz, Tz}, d(1y, Ty}, d(Iz, Ty) d(Iy,Tm)}

Then I and T" have a unigue coincidence point in M.

Throughout this section, we shall assume that X* separates pomts ofa

p-normed space X whenever weak topology is under consxderat;on

THEOREM 2.2. Let I and T' be self-maps on a g- -starshaped subset M of a
p-normed space X. Assume that T satisfies condition (C), lT(M) C I(M),
g € F(I) and I is affine. Suppose that I and T' are continuous, and satisfy

{EIIm — Iyll,, dist{Iz, [Tz, q)), dist(ly, [Ty, a),
dist(Iz, [Ty, q}), dist(ly, [Tz, q])

“ for- all z,y € M. Then F(T) N F(I) 5 .G, pmvided one of the .follow.ing
conditions holds; , '

(22) [Tz —~Tyl, sm

(i) T (M) is compact ond I and T are compatible,

(i) M is complete and bounded, T is a compact map and I and T are

compatible,

(iii) M is complete and bounded TandT satzsfy condztzon (A% and I and

T are weakly compatible,
(iv) X is complete, M is weakly compact I —T is demiclosed at 0 and I
_ and T are weakly compatible,
(v) X is complete, M is weakly compact, I andT are completely continuous
and I and T are weakly compatible. |

Proof. Define To: M — M by Toz = (1 - kn)g + knTz for some ¢ and

all 2 € M and a fixed sequence of real numbers k, € (0,1) converging to 1.

Then, for each n, T (M) C I(M) as M is q—staxshaped clT(M ) C I(M),
Iis aﬁine and Iq g. By (2.2),

NTnx - nynp = (ka)? | Tz — Ty“p . ' :
< (kn)Pmaz{||Iz - Iyll, , dist(Iz, [T:r, ab, dzst(Iy, [Ty, a]),
dist(Iz, [Ty, ql); dist(Iy, [T'z,ql})} -
< (kn)Pmoz{|\ Iz ~ Tyllp, |72 — Tnzll, My — Tayll»
Iz ~ Tny”p ) Ufy T; x“p}?

- foreach z,y € M. R SR
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(i) Since clT(M) is compact, clTp (M) is also compact and hence com-.
plete. By Theorem 2.1, for each n > 1, there exists z;, € M such that
Iz, = Thzn. The compactness of cl(T(A) implies that there exists a -
subsequence {Tzp }of {Tz,} such that - Top, — y as m — oc. Since
Ckpm — 1, Izm = (1~ km)g + kmT'@m converges to y. Since T and T
are continuous, then TIz, — Ty and 1Tz, — Iy as.m — oc. By the
compatibility of I and T, we obtain 0 = limm—eo 1 ITZm — TTzml, =
Iy — Tyllp- Thus Iy = Ty. Hence the pair {I, T} is nontrivially com-
‘patible. Theorem 1.1 guarantees that M NF(I)NF(T) # 0.

(ii) As in (i), there is a unique z, € M such that Tozn = Izn. As T is
compact and {z,} being in M is bounded so {T'z,} has a subsequence
{Tz;)} such that {Tzp,} - z as m.—» co. Then the definition of Trzm
implies Iz, — z. So by the continuity of T’ and I. TIz,, — Tz and
ITx,, — Iz as m — oo, By the compatibility of I and 7', we obtain
Iz = Tz. Hence the pair {I,T} is nontrivially compatible. Theorem-

1.1 guarantees that M N F(NF(T) #0. - | -

(ili) Asin (i) there exists z,, € M such'that Izp = Tpzy. But M is bounded,

© 80 [Hzn — Tzallp = (1 — kn)g + knT'zn) — Tallp < (1~ kn)P(llgllp +
T zallp) — 0 as n — oo. By condition (A®), Izg = Txo for some zp €
M. Hence the pair {I, T} is nontrivially weakly compatible. Theorem
1.1 guarantees that M N F(I) N F(T) # 0. L

(iv) Since M is weakly compact and hence complete, then cl(T,(M)) is '
complete. By Theorem 2.1, for each n > 1, there exists z, € M
such that Iz, = Thay. The weak compactness of M implies that
there exists a subsequence {Zm} of {za} such that zn — y weakly
as m — o00. Since {zm} is bounded, kyn — 1, so NIz ~ Tzmlly =
1((L=Fm)g+ FmTEm) ~ Tomllp < (1~ ) (lallp + [z ) converges
to 0." Since (I — T) is demiclosed at 0 so (I — T)y = 0 and hence .

'Jy = Ty. Thus the pair {I, T} is nontrivially weakly compatible and
. the conclusion follows from Theorem 1.1, )

(v) As in (iv), we can find a subséquence {%m} of {zs} in M converging
weakly to y € M as m — oo. Since I and T are completely continuous,
then Iz, — Iy and Tz, — Ty as m — oo. Since km — 1, then Tz =
Tyt = kmTzm + (1 — km)g — Ty 85 m — co. Using the uniqueness
of the limit, we have Iy = Tys Thus the pair {I,T} is nontrivially
‘weakly compatible and the conclusion follows from Theorem 1.1.

.COROLLARY 2.3. 'L_etf M be a g-starshaped subset of o p-normed space X, and
I and T continuous self-maps of M: Suppose that I is affine with g € F(I),
dT(M) C I(M) and cIT(M) is compact. If T has d.o.d., the pair {I,T} is
" compatible. and satisfy (2.2) for oll z,y € M, then' M NFITNEI)#0.
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Proof. Since T has d o0.d, T has proper orbits [10] AsclT (Ad)) is compact,
T has relatively compact orbits. Therefore by Theorem 1.2, T satisfies
condition (C). The result now follows by Theorem 2.2(i). '

REMARK 2.4. Theorem 2.2 and Coroliary 2.3 extend and improve Theo-
rems 1 and 2 of Dotson [1], Theorem 4 of Habiniak [4], Theorem 2.3 and -

Corollary 2.4 of Jungck and Hussain {11}, Theorem 6 of Jungck and Sessa.

[12], Theorem 2.4 of O’Regan and Hussain {19], Theoréem 2.2 of Shahzad :

[24], and corresponding results in [14, 16, 21, 23, 25).

The following result extends Theorem 3 of (21], Theorem 8 of {4}, and . |

the main results'in {14, 16, 17, 25].

THEOREM 2.5. Let M be subset of a p- nof*med space X andletI,T: X — X.

be mappings such that u € F(TYNF(I) for some u € X and T(@M nM)c
. M. Assume that T satisfies condition (C), I{Pp(w)) = Pus(u) and the
pair {I,T"} is continuous and compatible on PM(u) and satisfy for all z €

Pu@u{y,
(23) |17z Tyl, | |
Mz~ Iu), : o  ify=u,

<& maz{|Iz - Iyl dist(Iz, [o, Tx)), dist(Ty, [o, Ty)),
dist(Iz, [q, Ty]), dist(Iy, lq, Tz])} if y € Pp(u),

If P(u) is closed, g-starshaped with ¢ € F(I), Iis aﬁine and cIT{Pat(u))

- is compact then Ppr(u) N F(I)n F(T) # 0.

Proof. Letz € PM(u) Then ”m —ufl, = dzst(u, M). Note that for any
ke(0,1);

kw4 (1 — )z u||P = (1'-; k)P ||z — uup < dist{u, M),
Tt follows that ‘the line segment {kt + (1~ k)z :0 < k < 1} and the-set M
-are disjoint. Thus z is not in the interior of M and so x € 8M N M. Since

T(BMNM) C M, Tz must bein M. Alsosince Iz € PM(u), u € F(T)NF(I)
~and T and 1 satisfy (2.3), we have

[[T:E —ull, =Tz — Tull, < Iz —-).Iu[] = ”Is: - u[[ = dist{u, M).

Thus Tz € Ppr(u). Theorem 2. 2(1) further guarantees that Py (u) nFI ) n

: F(T) # 0.
© Let D= Py(w)N Cj{,f(u), where Cﬁ,{(u) {x € M : Iz € Py(u)}.

The following result provides a non—locally convex space analome of

| Theorem 3.3 [7’} for more generai class of maps. - n

.5"_{;.
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THEOREM 2.6. Let M be subset of o p-normed space X and [T : X — X
* be mappings such that u € F(T)NF(I) for someu € X and T(OMN1) C

M. Suppose that T satisfies condition (C). D is closed g-starshaped with
g € F(I, T is affine, clT(D) is compact, I(D) = D and the pair {I.T}

is compatible and continuous on D end, for allz € DU {u} satisfies the -

following ineguality,
(24) Tz —Tyl,

< { maz{||Jz — Iyll, , dist(Iz, [, T=]), dist(Iy, [9, Ty]),
dist(Iz, g, Ty)), dist(Iy, |, Tz])} ifyeD,

IfIis nonezpansive on Prv[(u YU {u}, then Pi\,[ (w) N F(I) n F(TY+# .

Proof Let z € D then proceeding as in the proof of Theorem 2.5, we
obtain Tz € Ppr(u). Moreover, since 7 is nonexpanswe on Pur(u)U{u} and .

T satisfies (2.4), we obtain
WITz — ufl, < {iTz — Tufl, < < Tz — Jul), = a!?st(u M.

Thus ITz € P(u) and so Tz € Clr(w). Hence Tz € D. Consequently,

elT(D) ¢ D = I(D). Now Theorem 2.2(i) guarantees that Py () N F(I} N

F(T) #0. o .

H

REMARK 2.7. (é) It is worth to mention that approximation results similar
to Theorem 2.5 and Theorem 2.6 can be obtained, using Theorem 2.2(ii)-(v)
which extend and improve the corresPc)ndmO‘ results in [12 14, 16, 17, 21,
24, 25].

(b) As an application of ’I‘heorem 2.2(1), we can prove Theorem 2.7 of [11]

in the setup of p-normed space X.
{c) The results of this section hold true for the the nonlocally convex spaces,
for example, the sequences spaces lp, 0 < p.< 1 and Hardy spaces H?,

‘0 < p < 1 whose topological duals are total. When topological dual is ~

not total the situation becomes more complicated. The topological dual of
- X = Ly[0,1], 0 < p < 1, and X = S[0,1], vanish and Shauder’s conjecture
is still open even for these spaces (see for details (18, 20] and references‘
therein). u ,

3. Further results
(1) All results of the paper (Theorem 2.2-Remark 2. 7) remain valid in the
setup of a metrizable locally convex topological vector space (X,d),
" where d is translation invariant and d(az, ey) < ad(z,y), for each «

o _i{vith 0<a<1landzy€ X (recall that dy is translation invariant

LU
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“and satisfies d,p(cxm, ay) < (a)Pdp{x.y) for any scalar a >0 ). Conse )
quently, Theorem 2.2-Theorem 3.3 due to Hussain and Khan [7] and .

corresponding results in [5, 22, 26] are improved and extended.

We define CL;(u) = {z eM:Ire Py(u)} and denote by S the class

of closed convex subsets of X -containing 0. For M € Sy, we define M, =

{re M :d(0,z) < 2d(0,u)}. It is clear that Py(u) C My € .
Following result extends Theorem 8 in {4], Theorem 3.3 in {5}, Theorems

2.9-2.10 in [11], Theorem 2.6 in [19], Theorem 2.3-2.4 in [‘?3] Theorem 2.9 .

in [24] and many others. -

_ THEOREM 3.1. Let X be o me_trz’zable locally convez space (X, d) where d is
translation invariant and d(az, ay) < ad(z,y), for each o with0 < o < 1
endz,y € X, and [ and T be self- mappings of X with ¥ € F(I) N F(T)

and M € Sy such that T(My ) ¢ I(Al) C M. Suppose that I is affine,

d(Iz,u) £ d(z,u), d(Tr,u) < d(Iz,u) for all x € M, the pair {I,T} is
continuous on M and one of the following two conditions is satisfied:

(a. clI(M) is compact,
b) clT(M) is compact

Then

(i) Paglu) is nonempty, closed and conver,

(ii) T(PM(u)) cI (PM(u)) - PM(U) provided ihat d{Iz, u) < d(z,w) for

all z € CF,(u),
(i) Pyu)n FU)NF(T) # 6 promded that d(Iz ) < d(a: u) for all

x € Cl;(u), I and T satisfy condition (C), I (Pr(u)) is closed, the

pair {I,T} is compatible on Py (u) and satisfies for all g € F(I),

_ d(T:c, Ty) < max{d(Ix Iy), dist(Iz, [q, Tz}), dist(Iy, [g, Ty},
dast(l:r:, [q,Ty]) dist(Iy, [g,T:r])}, o

for all a: y € PM(u)
Proof -

(i) Let r = dz.st(u, M). Then there is 2 minimizing sequence {yn} in M.~
such that limad(u,y,) = r. As dlI(M) is compact so {Iya.} has a .
- convergent subsequence {Iy,} with limgy, Tym = - 20 (say) in M. Now.

by using d(lz,u) < d(x,u) weget
r < d(zo,u) = I%n t_i(Iym, u) < l%n d(ym,u) = Ii’{n d{yn, u) =71.

‘Hence zg € Pyi{u). Thﬁs Py (u) is nonempty closed and convex. Sim-
- ilarly, when clT(M) is compact we get same conclusion by using in-
- equalities d(I:r u) < d(a: u) and d{(Tz, 'u) < d(Iz, u) for all m& M.

o v}’
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Let = £ Pa:u). Then d(Tz,u) < difz,u) = dist{u,Af). This im-
plies that T: € Py(u) and so T(Pasiu)) € Par{u). Alse we have
I{Py(u)) € Pa(u). Let y € T Pp(ud. Since T(My) < I(M) and
Py{uy © AL. then there exist = € Py(u) and £ € M such that
y = 1z=Ix. Thus. we have

d({z.u) = d(Tz,u) < d(Iz,u) < d{z,v) = dist(u, AT).

Hence x € C{{u) = Py(u) and so (ii) holds.

{a) By (i) Py(u) is closed and by (ii) Pap(u) is I-invariant, so by
condition (C} of I, Ppr(u) N F{I) # 0. It follows that there exists
g € Py(u) such that ¢ € F(I). By (ii), the compactness of clI{M,)
implies that o/T(Pas(u)) is compact. The conclusion now follows from
Theorem 2.2{i}(which holds for metrizable locally convex space) ap-
plied to Pr(u).

(b) By (i) Py(u) is closed and by (ii) Pa(u) is I-invariant, so by
condition (C) of I, Py(u) N F(I) # 0, it follows that there exists
g € Ppr(u) such that ¢ € F(I). Theorem 2.2(i} further guarantees that
Pa{w) N F{TYNF(I) # 0.

Let A{ be subset of a p—normed space X and F = {f,}renm a family
of functions from [0, 1} into M such that fz(1) = « for each z € M.
The family F is said to be contractive [2, 13} if there exists a function
o : (0,1} — {0,1) such that for all 2,y € M and all ¢ € (0,1), we
have || fe(t) — fu(t)lly < [@(O)F]fiz — yllp. The family F is said to be
jointly (weakly) continuous if ¢ — tg in [0,1] and z — z, (x — z¢
weakly) in M, then fz(t) — fzolto) (fz(t} — fup(to) weakly) in M. We
observe that if M € X is g-starshaped and fy({) = (1~ t)g+tz, (z €
M;t € (0,1)), then F = {fy}zear is a contractive jointly continuous
and jointly weakly continuous family with ¢(¢) = ¢. Thus the class of
subsets of X with the property of contractiveness and joint continuity
contains the class of starshaped sets which in turn contains the class
of convex sets ({see [2, 8]). Foliowing the arguments as above and
those in [8, 13], we can obtain all of the results of the paper (Theorem
2.2-Remark 2.7) provided I is assumed to be surjective, and affinity of
I is replaced by I(fz(@)) = frz{a) for all z € M, o € [0, 1}, and the g¢-
starshapedness of the set A is replaced by the property of contractivity
and joint continuity or weak joint continuity. Consequently, recent-
results due to Hussain et al. [8], and Khan et al [13] are extended to
the class of weakly compatible pair {I,T} where T satisfies property
(C).

A subset M of a linear space X is said to have property (N ) with
respect to T [3, 8] if,
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;_i) I3 — M,
(1 —kyg+k,To € M, for some 7 £ M and a fixed ‘%equonce of
1Lal nmmbers b0 < ky, < 1) converging to 1 and for each x € AL

A mapping [ is said to be affine on a set M with property (N) if
Il —knjg+tnTa)= -k )lg+kpiTxforeachz € M and n e N,
All of the results of the paper (Theorem 2.3-Remark 2.7) remain valid,
provided 7 is assumed to be surjective and the g-starshapedness of
the set M is replaced by the property V), in the setup of p-normed
spaces and metrizable locally convex topological vector space(tvs)
(X, d) where d is translation invariant and d(az, ay) < ad{z,y), for
each o with 0 < @ < 1 and z,y ¢ X. Conseguently, recent results due
to Hussain and Berinde {5], and Hussain, O'Regan and Agarwal [§]
are extended to the class of weakly compatible maps, where 7" satisfies

property {C).
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